Том 11, № 4Страницы 78 - 93

Convergence Analysis of Linear Multistep Methods for a Class of Delay Differential-Algebraic Equations

Vu Hoang Linh, Nguyen Duy Truong, M.V. Bulatov
Дифференциально-алгебраические уравнения (ДАУ) с запаздываниями используются для моделирования реальных явлений, в которых могут одновременно присутствовать ограничения и запаздывания. Известно также, что решение ДАУ с запаздываниями является более сложной задачей, чем решение ДАУ без запаздываний, т.к. в случае с запаздываниями обычно требуется приближение решений на предыдущих временных отрезках и часто можно наблюдать разрыв у старших производных решений. В последнее время нами были предложены линейные многошаговые методы
решения для ДАУ низкого индекса без запаздывания. В данной работе мы расширили применение разработанных методов и используем их для решения ДАУ высокого индекса с постоянным запаздыванием. Для аппроксимации решений при запаздывании используется полиномиальная интерполяция. Представлен анализ сходимости линейных многошаговых методов. Показано, что, как и в случае отсутствия запаздывания, если вместо исходного ДАУ с запаздыванием мы дискретизируем особым образом переформулированное ДАУ, то для сходимости методов не требуется строгая устойчивость второго характеристического многочлена, поставленного в соответствие используемым методам. Теоретические выкладки проиллюстрированы численными расчетами.
Полный текст
Ключевые слова
дифференциально-алгебраические уравнения с запаздыванием; линейные многошаговые методы; устойчивость; сходимость.
Литература
1. Baker C.T.H., Paul C.A.H., Tian H. Differential Algebraic Equations with After-Effect. Journal of Computational and Applied Mathematics, 2002, vol. 140, pp. 63-80.
2. Bellen A., Maset S., Zennaro M., Guglielmi N. Recent Trends in the Numerical Solution of Retarded Functional Differential Equations. Acta Numerica, 2009, vol. 18, pp. 1-110.
3. Ha P. Analysis and Numerical Solution of Delay Differential-Algebraic Equations. PhD Thesis. Berlin, 2015.
4. Shampine L.F., Gahinet P. Delay-Differential-Algebraic Equations in Control Theory. Applied Numerical Mathematics, 2006, vol. 56, pp. 574-588.
5. Bellen A., Zennaro M. Numerical Methods for Delay Differential Equations. Oxford, Oxford University Press, 2003.
6. Bellman R., Cooke K.L. Differential-Difference Equations. N.Y., Academic Press, 1963.
7. Ascher U., Petzold L. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia, SIAM Society for Industrial and Applied Mathematics, 1998.
8. Hairer E., Wanner G. Solving Ordinary Differential Equation II. Berlin, Springer-Verlag, 1996.
9. Kunkel P., Mehrmann V. Differential-Algebraic Equations Analysis and Numerical Solution. Zurich, EMS Publishing House, 2006.
10. Ha P., Mehrmann V., Steinbrecher A. Analysis of Linear Variable Coefficient Delay Differential-Algebraic Equations. Journal of Dynamics and Differential Equations, 2014, vol. 26, pp. 1-26.
11. Ascher U., Petzold L. The Numerical Solution of Delay-Differential-Algebraic Equations of Retarded and Neutral Type. SIAM Journal on Numerical Analysis, 1995, vol. 32, pp. 1635-1657.
12. Hauber R. Numerical Treatment of Retarded Differential-Algebraic Equations by Collocation Methods. Advances in Computational Mathematics, 1997, vol. 7, pp. 573-592.
13. Hongliang L., Aiguo X. Convergence of Linear Multistep Methods and One-Leg Methods for Index-2 Differential-Algebraic Equations with a Variable Delay. Advances in Applied Mathematics and Mechanics, 2012, vol. 4, no. 5, pp. 636-646.
14. Linh V.H., Mehrmann V. Efficient Integration of Matrix-Valued Non-Stiff DAEs by Half-Explicit Methods. Journal of Computational and Applied Mathematics, 2014, vol. 262, pp. 346-360.
15. Linh V.H., Truong N.D. Stable Numerical Solution for a Class of Structured Differential-Algebraic Equations by Linear Multistep Methods. Submitted for publication, 2018.
16. Bulatov M.V., Linh V.H., Solovarova L.S. On BDF-Based Multistep Schemes for Some Classes of Linear Differential-Algebraic Equations of Index at Most 2. Acta Mathematica Vietnamica, 2016, vol. 41, no. 4, pp. 715-730.
17. Linh V.H., Truong N.D. Runge-Kutta Methods Revisited for a Class of Structured Strangeness-Free DAEs. Electronic transactions on numerical analysis ETNA, 2018, vol. 48, pp. 131-155.
18. Ascher U., Petzold L. Stability of Computational Methods for Constrained Dynamics Systems. SIAM Journal on Scientific Computing, 1993, vol. 14, pp. 95-120.
19. Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations I. Berlin, Springer-Verlag, 1996.