Том 11, № 4Страницы 123 - 135

Consistency and Lyapunov Stability of Linear Singular Time Delay Systems: a Geometric Approach

D.Lj. Debeljkovic, I.M. Buzurovic, G.V. Simeunovic
На практике при рассмотрении различных систем с управлением (химические инженерные системы, линии передачи без потерь, крупномасштабное управление электрической сетью, управление ориентацией самолета, гибкое управление руками роботов и т.д.) часто во многих ситуациях мы можем наблюдать наличие временного запаздывания. Вырожденные системы с запаздыванием являются динамическими системами, описываемыми взаимосвязанными алгебраическими и дифференциальными уравнениями. В данной работе исследуются геометрические представления начальных данных, которые обеспечивают гладкость решений рассматриваемых задач. Также изучается построение теории устойчивости Ляпунова для ограничения скорости убывания решений. Для одного класса изучаемых систем получены новые условия асимптотической устойчивости, зависящие от запаздывания. Более того, результат выражается в терминах матриц, которые задают систему и естественным образом возникают при моделировании, однако при этом отсутствует необходимость введения алгебраических преобразований в утверждение основной теоремы.
Полный текст
Ключевые слова
вырожденные системы с запаздыванием; устойчивость по Ляпунову; совместные начальные условия.
Литература
1. Campbell S.L. Singular Systems of Differential Equations. Marshfield, Pitman, 1980.
2. Muller P.C. Stability of Linear Mechanical Systems with Holonomic Constraint. Applied Mechanics Review, 1993, vol. 46, pp. 160-164.
3. Campbell S.L., Meyer C.D., Rose N.J., Application of Drazin Inverse to Linear Systems of Differential Equations. SIAM Journal on Applied Mathematics, 1976, vol. 31, pp. 411-425.
4. Luenberger D.G. Dynamic Equations in Descriptor Form. IEEE Transactions on Automatic Control, 1977, vol. 22, no. 3, pp. 312-321.
5. Bajic V.B. Lyapunov's Direct Method in the Analysis of Singular Systems and Networks. Hillcrest, Shades Technical Publications, 1992.
6. Campbell S.L. Singular Systems of Differential Equations II. Marshfield, Pitman, 1982.
7. Campbell S.L. Consistent Initial Conditions for Singular and Nonlinear Systems. Circuits, Systems and Signal Processing, 1983, vol. 2, pp. 45-55.
8. Lewis F.L. A Survey of Linear Singular Systems. Circuits, Systems and Signal Processing, 1986, vol. 5, pp. 3-36.
9. Lewis F.L. Recent Work in Singular Systems. Proceedings of Symposium on Electromagnetic Compatibility, Atlanta, 1987, pp. 20-24.
10. Debeljkovic D.Lj., Milinkovic S.A., Jovanovic M.B. Application of Singular Systems Theory in Chemical Engineering. MAPRET Lecture Monograph, 12th International Congress of Chemical and Process Engineering, 1996.
11. Pjescic R M., Chistyakov V., Debeljkovic D.Lj. On Dynamical Analysis of Particular Class of Linear Singular Time Delayed Systems: Stabilty and Robusteness, Belgrade, Faculty of Mechanical Engineering, 2008. (in Serbian)
12. Circuits, Systems and Signal Processing, Special Issue on Semi State Systems, 1986, vol. 5, no. 1.
13. Circuits, Systems and Signal Processing, Special Issue: Recent Advances in Singular Systems, 1989, vol. 8, no. 3.
14. Zhu S., Zhang C., Cheng Z., Feng J. Delay-Dependent Robust Stability Criteria for Two Classes of Uncertain Singular Time-Delay Systems. IEEE Transactions on Automatic Control, 2007, vol. 52, no. 5, pp. 880-885.
15. Xu S., Lam J., Zou Y. An Improved Characterization of Bounded Realness for Singular Delay Systems and Its Applications. International Journal of Robust and Nonlinear Control, 2008, vol. 18, no. 3, pp. 263-277.
16. Sun X., Zhang Q., Yang C., Su Z., Shao Y. An Improved Approach to Delay-Dependent Robust Stabilization for Uncertain Singular Time-Delay Systems. International Journal of Automation and Computing, 2010, vol. 7, no. 2, pp. 205-212.
17. Debeljkovic D.Lj., Stojanovic S.B., Jovanovic M.B., Milinkovic S.A. Singular Time Delayed System Stabilty Theory: Approach in the Sense of Lyapunov. Preprints of IFAC Workshop on Time Delay Systems, Leuven, 2004, Article ID: 9886174, 19 p.
18. Debeljkovic D.Lj., Stojanovic S.B., Jovanovic M.B., Milinkovic S.A. Further Results on Singular Time Delayed System Stability. Proceedings of IEEE ACC 2005, Oregon, 2005, Article ID: 8573603, 23 p.
19. Debeljkovic D.Lj., Stojanovic S.B., Jovanovic M.B., Milinkovic S.A. Further Results on Descriptor Time Delayed System Stability Theory in the Sense of Lyapunov: Pandolfi Based Approach. The Fifth International Conference on Control and Automation, Budapest, 2005, pp. 353-358.
20. Debeljkovic D.Lj., Stojanovic S.B., Jovanovic M.B., Milinkovic S.A. Further Results on Descriptor Time Delayed System Stability Theory in the Sense of Lyapunov: Pandolfi Based Approach. International Journal of Information and System Science, 2006, vol. 2, no. 1, pp. 1-11.
21. Debeljkovic D.Lj., Stojanovic S.B., Visnjic N.S., Milinkovic S.A. Singular Time Delayed System Stability Theory in the Sense of Lyapunov: A Quite New Approach. American Control Conference, N.Y., 2007, pp. 21-29.
22. Debeljkovic D.Lj., Stojanovic S.B., Milinkovic S.A., Jacic A., Visnjic N., Pjescic M. Stability in the Sense of Lyapunov of Generalized State Space Time Delayed Systems: A Geometric Approach. International Journal of Information and System Science, 2008, vol. 4, no. 2, pp. 278-300.
23. Pandolfi L. Controllability and Stabilization for Linear Systems of Algebraic and Differential Equations. Journal of Optimization Theory and Applications, 1980, vol. 30, no. 4, pp. 601-620. DOI: 10.1007/BF01686724
24. Owens D.H., Debeljkovic D.Lj. Consistency and Lyapunov Stability of Linear Descriptor Systems: A Geometric Approach. Journal on Mathematical Control and Information, 1985, vol. 2, pp. 139-151. DOI: 10.1093/imamci/2.2.139
25. Lee T.N., Diant S. Stability of Time-Delay Systems. IEEE Transactions on Automatic Control, 1981, vol. 26, no. 4, pp. 951-953. DOI: 10.1109/TAC.1981.1102755
26. Xu S., Dooren P.V., Stefan R., Lam J. Robust Stability and Stabilization for Singular Systems with State Delay and Parameter Uncertainty. IEEE Transactions on Automatic Control, 2002, vol. 47, pp. 122-128.
27. Debeljkovic D.Lj. Singular Control Systems. Dynamics of Continuous, Discrete and Impulsive Systems, 2004, vol. 11, pp. 697-706.
28. Debeljkovic D.Lj. Time Delay Systems. Vienna, Intechopen, 2011.
29. Debeljkovic D.Lj., Stojanovic S.B. Asymptotic Stability Analysis of Linear Time Delay Systems: Delay Dependent Approach. Systems Structure and Control, 2008, pp. 29-60.
30. Debeljkovic D.Lj., Nestorovic T. Time Delay Systems. Stability of Linear Continuous Singular and Discrete Descriptor Systems over Infinite and Finite Time Interval. Systems Structure and Control, 2011, pp. 15-30.
31. Debeljkovic D.Lj., Nestorovic T. Time Delay Systems. Stability of Linear Continuous Singular and Discrete Descriptor Time Delayed Systems. Systems Structure and Control, 2011, pp. 31-74.
32. Stojanovic S.B., Debeljkovic D.Lj. Necessary and Sufficient Conditions for Delay Dependent Asymptotic Stability of Linear Continuous Large Scale Time Delay Autonomous Systems. Asian Journal of Control, 2005, vol. 7, no. 4, pp. 414-418. DOI: 10.1111/j.1934-6093.2005.tb00403.x
33. Debeljkovic D.Lj., Stojanovic S.B., Milinkovic S.A., Jacic Lj.A., Visnjic N.S., Pjescic M.R. Stability in the Sense of Lyapunov of Generalized State Space Time Delayed Systems: A Geometric Approach. International Journal of Information and System Science, 2008, vol. 4, no. 2, pp. 278-300.
34. Debeljkovic D.Lj., Buzurovic I.M. Lyapunov Stability of Linear Continuous Singular Systems: An Overview. International Journal of Information and System Science, 2011, vol. 7, no. 2, pp. 247-268.
35. Debeljkovic D.Lj., Stojanovic S.B., Jovanovic A.M. Finite Time Stability of Continuous Time Delay Systems: Lypunov - Like Approach with Jensens and Coppels Inequality. Acta Polytechnica Hungarica, 2013, vol. 10, no. 7, pp. 135-150.