Том 12, № 2Страницы 136 - 142

The Barenblatt - Zheltov - Kochina Model on The Segment with Wentzell Boundary Conditions

N.S. Goncharov
В терминах теории относительно p-ограниченных операторов исследуется модель Баренблатта - Желтова - Кочиной, описывающая динамику давления фильтрующейся жидкости в трещинновато-пористой среде с общими граничными условиями Вентцеля. В частности, рассматривается спектр одномерного оператора Лапласа на отрезке [0,1] c общими граничными условиями Вентцеля; ставится вопрос об относительном спектре в одномерном уравнении Баренблатта - Желтова - Кочиной и построении разрешающей группы в задаче Коши - Вентцеля с общими граничными условиями Вентцеля. В работе решены указанные задачи в предположении, что исходное пространство, в котором действует оператор Лапласа на отрезке, есть сужение пространства L^2(0,1).
Полный текст
Ключевые слова
модель Баренблатта - Желтова - Кочиной; относительно p-ограниченный оператор; фазовое пространство; C0-сжимающие полугруппы; краевые условия Вентцеля.
Литература
1. Вентцель, А.Д. Полугруппы операторов, соответствующие обобщенному дифференциальному оператору второго порядка / А.Д. Вентцель // ДАН СССР. - 1956. - Т. 111. - С. 269-272.
2. Feller, W. Generalized Second Order Differential Operators and Their Lateral Conditions / W. Feller // Illinois Journal of Mathematics. - 1957. - V. 1, № 4. - P. 459-504.
3. Wentzell, A.D. On Boundary Conditions for Multidimensional Diffusion Processes / A.D. Wentzell // Theory of Probability and Its Applications. - 1959. - V. 4. - P. 164-177.
4. Favini, A. Classification of General Wentzell Boundary Conditions for Fourth Order Operators in One Space Dimension / A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli // Journal of Mathematical Analysis and Applications. - 2007. - V. 333, № 1. - P. 219-235.
5. Coclite G.M., Favini A., Gal C.G., Goldstein G.R., Goldstein J.A. Obrecht E., Romanelli S. The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis. Advances in Nonlinear Analysis: Theory, Methods and Applications, 2009, vol. 3, pp. 279-292.
6. Gal C.G. Sturm-Liouville Operator with General Boundary Conditions / Ciprian G. Gal // Electronic Journal of Differential Equations. - 2005. - V. 2005, № 120. - P. 1-17.
7. Favini, A. The Laplacian with Generalized Wentzell Boundary Conditions / A. Favini, G.R. Goldstein, J.A. Goldstein, Enrico Obrecht, S. Romanelli // Progress in Nonlinear Differential Equations and Their Applications. - 2003. - V. 55. - P. 169-180.
8. Favini, A. The Heat Equation with Generalized Wentzell Boundary Condition / A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli // Journal of Evolution Equations. - 2002. - V. 2. - P. 1-19.
9. Sviridyuk, G.A. The Barenblatt-Zheltov-Kochina Model with Additive White Noise in Quasi-Sobolev Spaces / G.A. Sviridyuk, N.A. Manakova // Journal of Computational and Engineering Mathematics. - 2016. - V. 3, № 1. - P. 61-67.
10. Banasiak, J. Mathematical Properties of Inelastic Scattering Models in Linear Kinetic Theory / J. Banasiak // Mathematical Models and Methods in Applied Sciences. - 2000. - V. 10, № 2. - P. 163-186.
11. Banasiak J., Lachowicz M., Moszynski M. Chaotic Behavior of Semigroups Related to the Process of Gene Amplification-Deamplification with Cell Proliferation / J. Banasiak // Mathematical Biosciences. - 2007. - V. 206, № 2. - P. 200-205.