Том 15, № 1Страницы 5 - 22

Oskolkov Models and Sobolev-Type Equations

T.G. Sukacheva
Данная статья посвящена обзору работ, выполненных автором совместно со своими учениками и посвященных исследованию различных моделей Осколкова. Их отличительной особенностью является использование полугруппового подхода, лежащего в основе метода фазового пространства, широко применяемого в теории уравнений соболевского типа. Приведены различные модели несжимаемой вязкоупругой жидкости, описываемые уравнениями Осколкова. В качестве примеров рассмотрены вырожденная задача магнитогидродинамики, задача термоконвекции и задача Тейлора. Разрешимость соответствующих начально-краевых задач исследуется в рамках теории уравнений соболевского типа, основанной на теории относительно p-секториальных операторов и вырождающихся полугрупп операторов. Доказана теорема существования единственного решения, являющегося квазистационарной полутраекторией, и получено описание расширенного фазового пространства. Основы теории разрешимости уравнений соболевского типа были заложены профессором Г.Свиридюком. Затем эта теория вместе с различными приложениями была успешно развита его последователями.
Полный текст
Ключевые слова
системы Осколкова; уравнения соболевского типа; фазовое пространство; несжимаемая вязкоупругая жидкость.
Литература
1. Amfilokhiev V.B., Voitkunsky Ya.I., Mazaeva N.P., Khodorkovsky Ya.S. The Flows of Polymer Solutions in the Presence of Convective Accelerations. Proceedings of Leningrad. Shipbuilding Institute, 1975, issue 96, pp. 3–9.
2. Favini A., Sviridyuk G., Sagadeeva M. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises”. Mediterranean Journal of Mathematics, 2016, vol. 13, no. 6, pp. 4607–4621. DOI: 10.1007/s00009-016-0765-x
3. Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises”. Abstract and Applied Analysis, 2016, vol. 13, pp. 1–8. DOI: 10.1155/2015/697410
4. Favini A., Zagrebina S.A., Sviridyuk G.A. Multipoint Initial-Final Value Problems for Dinamical Sobolev-Type Equations in the Space of Noises. Electronic Journal of Differential Equations, 2018, vol. 2018, no. 128, pp. 1–10.
5. Hide R. On Planetary Atmospheres and Interiors. Lectures in Applied Mathematics, 1971, vol. 12, pp. 229-353.
6. Kadchenko S.I., Kondyukov A.O. Numerical Study of a Flow of Viscoelastic Fluid of Kelvin– Voigt Having Zero Order in a Magnetic Field. Journal of Computational and Engineering Mathematics, 2016, vol. 3, no. 2, pp. 40–47. DOI: 10.14529/jcem1602005
7. Kondyukov A.O., Sukacheva T.G. Phase Space of the Initial-Boundary Value Problem for the Oskolkov System of Nonzero Order. Computational Mathematics and Mathematical Physics, 2015, vol. 55, no. 5, pp. 823–829. DOI: 10.1134/S0965542515050127
8. Kondyukov A.O. Generalized Model of Incompressible Viscoelastic Fluid in the Earth’s Magnetic Field. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2016, vol. 8, no. 3, pp. 13–21. DOI: 10.14529/mmph160302
9. Kondyukov A.O., Sukacheva T.G., Kadchenko S.I., Ryazanova L.S. Computational Experiment for a Class of Mathematical Models of Magnetohydrodynamics. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 1, pp. 149–155. DOI: 10.14529/mmp170110
10. Kondyukov A.O., Sukacheva T.G. Phase Space of the Initial-Boundary Value Problem for the Oskolkov System of the Highest Order. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 4, pp. 67–77. DOI: 10.14529/mmp180405
11. Kondyukov A.O., Sukacheva T.G. A Non-Stationary Model of the Incompressible Viscoelastic Kelvin–Voigt Fluid of Non-zero Order in the Magnetic Field of the Earth. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2019, vol. 12, no 3, pp. 42–51. DOI: 10.14529/mmp190304
12. Ladyzhenskaya O.A. Mathematical Problems of Viscous Dynamics Incompressible Fluid. Moscow, Nauka, 1970. (in Russian)
13. Marsden J.E., McCracken M. The Hopf Bifurcation and Its Applications. N.Y., Springer, 1976.
14. Matveeva O.P., Sukacheva T.G. Matematicheskie modeli vyazkouprugikh neszhimaemykh zhidkostei nenulevogo poryadka [The Mathematical Models of a Viscoelastic Incompressible Fluid of Nonzero Order]. Chelyabinsk, Publishing Center of South Ural State University, 2014. (in Russian)
15. Oskolkov A.P. Some Nonstationary Linear and Quasilinear Systems Encountered in the Study of Motion Viscous Liquids. Journal of Soviet Mathematics, 1976, vol. 59, pp. 133–177.
16. Oskolkov A.P. On the Theory of Voight Liquids. Journal of Soviet Mathematics, 1980, vol. 96, pp. 233–236.
17. Oskolkov A.P. About Non-Stationary Motions of Viscoeladtic Fluids. Trudy matematicheskogo instituta imeni V.A. Steklova, 1983, vol. 159, pp. 101 130. (in Russian)
18. Oskolkov A.P., Akhmatov M.M., Kotsiolis A.A. On the Equations of Motion of Linear Viscoelastic Fluids and Equations of Fluid Filtration with Delay. Journal of Soviet Mathematics, 1987, vol. 163, pp. 132–136.
19. Oskolkov A.P. [Initial-Boundary Value Problems for the Equations of the Motion of the Kelvin–Voight and Oldroyd Fluids]. Trudy Matematicheskogo Instituta Imeni V.A. Steklova, 1988, no. 179, pp. 126–164. (in Russian)
20. Oskolkov A.P. Non-Local Problems for One Class Nonlinear Operator Equations Arising in the Theory Equations of S.L. Sobolev Type. Journal of Soviet Mathematics, 1991, vol. 19, pp. 31–48.
21. Sagadeeva M.A., Zagrebina S.A., Manakova N.A. Optimal Control of Solutions of a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobbolev Type Equation. Evolution Equations and Control Theory, 2019, vol. 8, no. 3, pp. 473–488.
22. Shestakov A.L., Sviridyuk G.A., Khudyakov Yu.V. Dynamic Measurements in “Noise” Spaces. Bulletin of the South Ural State University. Series: Computer Technologies. Control. Electronics, 2013, vol. 13, no. 2, pp. 4–11.
23. Sukacheva T.G. On One Model of an Incompressible Viscoelastic Kelvin–Voight Fluid of Nonzero Order. Differential Equation, 1997, vol. 33, no 4, pp. 552–557.
24. Sukacheva T.G. On the Solvability of the Non-Stationary Problem of Dynamics of Incompressible Viscoelastic Kelvin–Voight Fluid of Nonzero Order. Russian Mathematics, 1998, no. 3 (430), pp. 47–54.
25. Sukacheva T.G. Solvability of a Nonstationary Thermal Convection Problem for a Viscoelastic Incompressible Fluid Differential Equations, 2000, vol. 36, no. 8, pp. 1225–1232.
26. Sukacheva T.G., Matveeva O.P. The Thermoconvection Problem of the Incompressible Viscoelastic Kelvin–Voight Fluid of the Nonzero Order. Russian Mathematics, 2001, no. 11, pp. 46–53.
27. Sukacheva T.G., Daugavet M.N. Linearized Model of the Motion of an Incompressible Viscoelastic Kelvin–Voigt Fluid of Nonzero Order. Journal of Applied and Industrial Mathematics, 2003, vol. 6, no. 4, pp. 111–118.
28. Sukacheva T.G. Non-Stationary Linearized Model of the Motion of an Incompressible Viscoelastic Fluid. Bulletin of Chelyabinsk State University, 2009, vol. 11, no. 20 (158), pp. 77–83. (in Russian)
29. Sukacheva T.G. Non-Stationary Linearized Model of the Motion of an Incompressible Viscoelastic Fluid of the High Order. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2009, no. 17 (150), pp. 86–93.
30. Sukacheva T.G. Thermoconvection Problem for a Linearized Model of an Incompressible Viscoelastic Fluid of Nonzero Order. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2011, no. 37 (254), pp. 40–53.
31. Sukacheva T.G. Generalized Linearized Model of Thermal Convection of an Incompressible Viscoelastic Fluid of Nonzero Order. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 5 (264), pp. 75–87.
32. Sukacheva T.G., Kondyukov A.O. Phase Space of a Model of Magnetohydrodynamics. Differential Equations, 2015, vol. 51, no. 4, pp. 502–509. DOI: 10.1134/S0012266115040072
33. Sukacheva T.G., Matveeva O.P. Taylor’s Problem for a Model of an Incompressible Viscoelastic Fluid of Zero Order. Differential Equation, 2015, vol. 51, no. 6, pp. 771–779.
34. Sukacheva T.G., Kondyukov A.O. Phase Space of a Model of Magnetohydrodynamics of Nonzero Order. Differential Equations, 2017, vol. 53, no. 8, pp. 1054–1061. DOI: 10.1134/S0012266117080109
35. Sviridyuk G.A. A Model for the Dynamics of an Incompressible Viscoelastic Fluid. Soviet Mathematics (Izvestiya VUZ. Matematika), 1988, vol. 32, no. 1, pp. 94–100.
36. Sviridyuk G.A., Sukacheva T.G. Phase Spaces of a Class of Operator Semilinear Equations of Sobolev Type. Differential Equations, 1990, vol. 26, no. 2. pp. 188–195.
37. Sviridyuk G.A., Sukacheva T.G. The Cauchy Problem for a Class of Semilinear Equations of Sobolev Type. Siberian Mathematical Journal, 1990, vol. 31, no. 5, pp. 794–802.
38. Sviridyuk G.A. One Problem for the Generalized Boussinesq Filtration Equation. Soviet Mathematics (Izvestiya VUZ. Matematika) , 1989, vol. 33, no. 2, pp. 62–73.
39. Sviridyuk G.A. Solvability of the Viscoelastic Thermal Convection Problem of Incompressible Fluid. Russian Mathematics, 1990, no. 12, pp. 65–70.
40. Sviridyuk G.A. Semilinear Equations of Sobolev Type with a Relatively Bounded Operator. Doklady Mathematics, 1991, vol. 43, no. 3, pp. 797–801.
41. Sviridyuk G.A. Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type. Russian Academy of Sciences. Izvestiya Mathematics, 1994, vol. 42, no. 3, pp. 601–614.
42. Sviridyuk G.A. On the General Theory of Operator Semigroups. Russian Mathematical Surveys, 1994, vol. 49, no. 4, pp. 45–74. DOI: 10.1070/RM1994v049n04ABEH002390
43. Sviridyuk G.A. On a Model of the Dynamics of a Weakly Compressible Viscoelastic Fluid. Russian Mathematics (Izvestiya VUZ. Matematika), 1994, vol. 38, no. 1, pp. 59–68.
44. Sviridyuk G.A., Efremov A.A. An Optimal Control Problem for a Class of Linear Equations of Sobolev Type. Russian Mathematics, 1996, no. 12, pp. 60–71.
45. Sviridyuk G.A., Sukacheva T.G. On the Solvability of a Nonstationary Problem Describing the Dynamics of an Incompressible Viscoelastic Fluid. Mathematical Notes, 1998, vol. 63, no. 3, pp. 388–395.
46. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, Boston, K¨oln, Tokyo, VSP, 2003.
47. Sviridyuk G.A., Shemetova V.V. Hoff’s Equations on Graphs. Differential Equations, 2006, vol. 42, no. 1, pp. 139–145.
48. Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A. Multipoint Initial-Final Value for One Class of Sobolev Type Models of Higher Order with Additive “White Noise”. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2018, vol. 11, no. 3, pp. 103–117. DOI: 10.14529/mmp180308
49. Truesdell C. A First Course in Rational Continuum Mechanics. N.Y., Academic Press, 1977.
50. Vasyuchkova K.V., Manakova N.A., Sviridyuk G.A. Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise”. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2017, vol. 10, no. 4, pp. 5–14. DOI: 10.14529/mmp170401
51. Zagrebina S.A., Konkina A.S. The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 1, pp. 132–136. DOI: 10.14529/mmp150111