Том 18, № 4Страницы 56 - 65

Numerical Identification of Hydrodynamic Parameters of a Reservoir under Elastic-Water-Drive Development Mode

Kh.M. Gamzaev
Рассматривается процесс разработки нефтяного пласта в упруговодонапорном режиме. Предполагается, что вытеснение нефти краевой водой происходит полностью и в пласте образуется четкая граница раздела двух жидкостей, которая движется по заранее неизвестному закону. В рамках одномерной модели упруговодонапорного режима разработки поставлена задача идентификации основных гидродинамических параметров пласта, т.е. давления на границе раздела жидкостей, распределения давления в пласте и положения границы раздела жидкостей, только на основании информации, полученной из галереи эксплуатационных скважин. Поставленная задача относится к классу граничных обратных задач.
Полный текст
Ключевые слова
Применяя методы выпрямления фронтов и разностной аппроксимации, поставленная задача сводится к решению системы разностных уравнений. Для решения системы разностных уравнений предлагается специальное представление, предварительно записавая ее в виде вариационной задачи с локальной регуляризацией. В результате получены явная формула для определения приближенного значения давления на границе раздела жидкостей и рекуррентные формулы для определения распределения давления и положения границы раздела жидкостей в пласте на каждом временном слое. На основе предложенного вычислительного алгоритма были проведены численные эксперименты для модельного нефтяного пласта.
Литература
1. Aziz K., Settari A. Petroleum Reservoir Simulation. Applied Science Publishers, London, 1979. DOI: 10.1016/c2018-0-04535-1
2. Shchelkachev V.N., Lapuk B.B. Podzemnaya Gidravlika [Underground Hydraulics]. Reguljarnaja i Haoticheskaja Dinamika. Series: Sovremennye Neftegazovye Tehnologii, Moscow, Izhevsk, 2001. (in Russian)
3. Basniyev K.S., Dmitriyev N.M., Rozenberg G.D. Neftegazovaya Gidro-mekhanika [Oil and Gas Hydromechanics]. Institut Komp'juternyh Issledovanij. Series: Sovremennye Neftegazovye Tehnologii, Izhevsk, 2005. (in Russian)
4. Vishnyakov V.V., Suleimanov B.A., Salmanov A.V., Zeynalov E.B. Primer on Enhanced Oil Recovery. Gulf Professional Publishing, Houston, 2019. DOI: 10.1016/C2017-0-03909-5
5. Meirmanov A.M. The Stefan Problem. Walter de Gruyter, Berlin, 1992. DOI: 10.1515/9783110846720
6. Samarskii A.A., Vabishchevich P.N. Computational Heat Transfer. John Wiley and Sons Ltd, Chichester, 1995.
7. Alifanov O.M. Inverse Heat Transfer Problems. Springer Verlag, Berlin, 2011. DOI: 10.1007/978-3-642-76436-3
8. Samarskii A.A., Vabishchevich P.N. Numerical Methods for Solving Inverse Problems of Mathematical Physics. Walter de Gruyter, Berlin, 2007. DOI: 10.1515/9783110205794
9. Kabanikhin S.I. Inverse and Ill-posed Problems. Walter de Gruyter, Berlin, 2011. DOI: 10.1515/9783110224016
10. Hasanov A.H., Romanov V.G. Introduction to Inverse Problems for Differential Equations. Springer-Verlag, Berlin, 2021. DOI: 10.1007/978-3-030-79427-9
11. Prilepko A.I., Orlovsky D.G., Vasin I.A. Methods for Solving Inverse Problems in Mathematical Physics. Marcel Dekker, New York, 2000. DOI: 10.1201/9781482292985
12. Kostin A.B, Prilepko A.I. On Some Problems of Restoration of a Boundary Condition for a Parabolic Equation II. Differential Equations, 1996, vol. 32, no. 1, pp. 113-122.
13. Kozhanov A.I. Inverse Problems for Determining Boundary Regimes for Some Equations of Sobolev Type. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2016, vol. 9, no. 2, pp. 37-45. DOI: 10.14529/mmp160204
14. Vasil'ev V.V., Vasilyeva M.V., Kardashevsky A.M. The Numerical Solution of the Boundary Inverse Problem for a Parabolic Equation. Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings, 2016, vol. 1773, no. 1. DOI: 10.1063/1.4965004
15. Gamzaev Kh.M. Inverse Problem of Pipeline Transport of Weakly-Compressible Fluids. Journal of Engineering Physics and Thermophysics, 2020, vol. 93, no. 6, pp. 1567-1573. DOI: 10.1007/s10891-020-02261-x
16. Gamzaev Kh.M., Bayramova N.Kh. Identification of the Boundary Condition in the Diffusion Model of the Hydrodynamic Flow in a Chemical Reactor. Bulletin of the South Ural State University. Series: Mathematical Modeling, Programming and Computer Software, 2024, vol. 17, no. 2, pp. 5-14. DOI: 10.14529/mmp240201
17. Tabarintseva E.V. On the Estimate of Accuracy of the Auxiliary Boundary Conditions Method for Solving a Boundary Value Inverse Problem for a Nonlinear Equation. Numerical Analysis and Applications, 2018, vol. 11, no. 3, pp. 236-255. DOI: 10.1134/S1995423918030059
18. Vasil'ev V., Vasilyeva M. An Accurate Approximation of the Two-Phase Stefan Problem with Coefficient Smoothing. Mathematics, 2020, vol. 8, no. 11, 25 p. DOI: 10.3390/math8111924
19. Gol'dman N.L. Investigation of Mathematical Models of One-Phase Stefan Problems with Unknown Nonlinear Coefficients. Eurasian Mathematical Journal, 2017, vol. 8, no. 3, pp. 48-59.
20. Johansson B. Tomas, Lesnic Daniel, Reeve Thomas. A Meshless Method for an Inverse Two-Phase One-Dimensional Linear Stefan Problem. Inverse Problems in Science and Engineering, 2013, vol. 21, no. 1, pp. 17-33. DOI: 10.1080/17415977.2012.665906
21. Kassabek S.A., Kharin S.N., Suragan D. A Heat Polynomial Method for Inverse Cylindrical One-Phase Stefan Problems. Inverse Problems in Science and Engineering, 2021, vol. 29, no. 13, pp. 3423-3450. DOI: 10.1080/17415977.2021.2000977
22. Gamzaev Kh. M. Identification of the boundary Mode in One Thermal Problem Based on the Single-Phase Stefan Model. Cybernetics and Systems Analysis, 2023, vol. 59, no. 2, pp. 266-273. DOI: 10.1007/s10559-023-00560-8
23. Damian Slota. Direct and Inverse One-Phase Stefan Problem Solved by the Variational Iteration Method. Computers and Mathematics with Applications, 2007, vol. 54, no. 7-8, pp. 1139-1146. DOI: 10.1016/j.camwa.2006.12.061